55 research outputs found

    Assessment of the Freshwater Mussel Community of the Upper Mahoning River Watershed and Factors Influencing Diversity and Abundance in Small Streams

    Get PDF
    Freshwater mussel communities have experienced drastic declines in diversity and abundance in many streams throughout North America. Among the reasons for these declines is the human-driven alteration of the landscape, as urban and agricultural use impart many known stressors to aquatic systems. Impairments include increased sedimentation, increased pollutants, increased flood frequency and intensity, and decreased diversity and abundance of many organisms, including fish, macroinvertebrates, and mussels. Attempts to explain the abundance and diversity of mussel communities using small-scale factors such as substrate type and flow velocity provided little to no predictive power. Instead, reach-scale variables, such as stream morphology and riparian vegetation, and catchment-scale variables, such as land use, performed better as predictors of mussel diversity and abundance. In this study, surveys of mussel communities were performed in Eagle Creek in 2013 and throughout the entire upper Mahoning River watershed in 2014. Stream morphology was assessed at the sites surveyed in 2014. No published surveys exist for the mussel community of the upper Mahoning River watershed, which is a headwater system in the upper reaches of the Ohio River watershed. The Eagle Creek watershed had the highest proportion of forested land in the upper Mahoning River watershed and supported the largest and most diverse mussel community, although evidence for recruitment was limited in this stream. Across the region, abundance and species richness were strongly correlated with drainage area. Abundance and species richness decreased with increased shear stress, electrical conductivity, and agricultural and urban land use. Conductivity was also correlated with agricultural land use, and no live mussels were found where conductivity exceeded 0.9mS. Overall, the upper Mahoning River watershed had a low diversity and abundance of freshwater mussels, likely due to the intensive anthropogenic land use. Even where conditio

    A Quantitative Evaluation of Growth in Leptodea Fragilis Before and After the Arrival of Zebra Mussels in Lake Erie

    Get PDF
    The arrival of zebra mussels in the Great Lakes in the 1980ā€™s marked several environmental changes, most notably in freshwater mussels in the Unionidae. There are no studies of population demographics of native Great Lake species before this period of time. In this study, several recent shell collections of Leptodea fragilis, a fast-growing freshwater mussel, were made on various beaches along Lake Erie. To compare the effects of the zebra mussels on L. fragilis, we compared growth rates, determined from size and estimated age of shells, to additional collections of L. fragilis from 1941 to 1967available at the Cleveland Museum of Natural History. The growth rates of this species are exceptional for their speed among freshwater mussels. A modern comparison of growth rates and age are presented with a sexually dimorphic unionid river species, Lampsilis siliquoidea, that were collected in Summer 2013. We hypothesized that the arrival of zebra mussels could affect the growth rate of L. fragilis by selecting on age of reproduction or growth to reach a minimum size for reproduction, results that could shift growth curves and/or age demography of current populations, and help them persist where zebra mussels remain abundant.https://engagedscholarship.csuohio.edu/u_poster_2013/1006/thumbnail.jp

    The Impact of Dreissenid Mussels on Growth of the Fragile Papershell (Leptodea fragilis), the Most Abundant Unionid Species in Lake Erie

    Get PDF
    The arrival of zebra mussels (Dreissena polymorpha (Pallas, 1771)) and subsequently quagga mussels (Dreissena bugensis Andrusov, 1897) (Dreissenidae) in the Great Lakes in the 1980s induced many changes, most notably the devastation of native freshwater mussel species. Recently, empty shells of the fragile papershell (Leptodea fragilis (Rafinesque, 1820)) have become common, particularly in the western basin of Lake Erie, suggesting that this fast-growing species may be increasing in numbers in the lake. To examine continued competition with dreissenids, shell age and length of L. fragilis were used to contrast lifespan and growth rate, estimated as the slope of age on shell length, for shells from two beach localities where byssal threads were present on most shells and two sites where dreissenids were rare or absent. Few recent shells from Lake Erie beaches exceeded 5 years of age, and byssal thread counts were more numerous on older shells. Growth and lifespan were estimated to be significantly lower where dreissenid mussels remained numerous than when measured either from historic collections along Lake Erie or from protected populations. Therefore, even for this early-reproducing species, competition from dreissenids may continue to interfere with growth and shorten lifespan, which are effects few other unionid species can likely tolerate sufficiently to sustain population growt

    Mitochondrial DNA Variation in the Eastern Pondmussel, Ligumia nasuta (Bivalvia: Unionoida), in the Great Lakes Region

    Get PDF
    Most freshwater mussel species in the Great Lakes colonized the region from the Mississippi River basin and few appear to have colonized from Atlantic coast rivers. The Eastern Pondmussel, Ligumia nasuta, is widespread along the Atlantic coast but occurs elsewhere only in the Great Lakes, suggesting that it is one of the few Great Lakes species of Atlantic origin. Great Lakes populations are now imperiled following invasion of the lakes by dreissenid mussels. We examined patterns of diversity in the mitochondrial CO1 and ND1 genes in L. nasuta populations in the Great Lakes and in Atlantic coast rivers. Genetic diversity was low in Great Lakes populations and included only one CO1 and two ND1 haplotypes, all of which were also found in Atlantic coast populations. Genetic diversity was higher in Atlantic coast populations and included four CO1 and six ND1 haplotypes. Pairwise Š¤ST revealed significant genetic differentiation for both genes between Atlantic coast and Great Lakes populations but not within Great Lakes populations. These results suggest that all populations of L. nasuta in the Great Lakes are derived from a single, small founder group that colonized from an Atlantic coast river. As such, Great Lakes populations may be considered a single management unit and conservation efforts based on propagation or translocation should be limited to use of Great Lakes source stock to prevent introduction of non-native haplotypes

    Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Get PDF
    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondriaā€“nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25ā€“26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondriaā€“cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to environmental stressors. Citation: Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL. 2014. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122:1271ā€“1278; http://dx.doi.org/10.1289/ehp.140841

    The Vitamin B1 Metabolism of Staphylococcus aureus Is Controlled at Enzymatic and Transcriptional Levels

    Get PDF
    Vitamin B1 is in its active form thiamine pyrophosphate (TPP), an essential cofactor for several key enzymes in the carbohydrate metabolism. Mammals must salvage this crucial nutrient from their diet in order to complement the deficiency of de novo synthesis. In the human pathogenic bacterium Staphylococcus aureus, two operons were identified which are involved in vitamin B1 metabolism. The first operon encodes for the thiaminase type II (TenA), 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase (ThiD), 5-(2-hydroxyethyl)-4-methylthiazole kinase (ThiM) and thiamine phosphate synthase (ThiE). The second operon encodes a phosphatase, an epimerase and the thiamine pyrophosphokinase (TPK). The open reading frames of the individual operons were cloned, their corresponding proteins were recombinantly expressed and biochemically analysed. The kinetic properties of the enzymes as well as the binding of TPP to the in vitro transcribed RNA of the proposed operons suggest that the vitamin B1 homeostasis in S. aureus is strongly regulated at transcriptional as well as enzymatic levels

    LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely.</p> <p>Results</p> <p>To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment.</p> <p>Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks roughly 27,000 assay runs, 860,000 specimen vials and 1,300,000 vial transfers.</p> <p>Conclusions</p> <p>Sharing data, analysis tools and infrastructure can speed the efforts of large research consortia by enhancing efficiency and enabling new insights. The Atlas installation of LabKey Server demonstrates the utility of the LabKey platform for collaborative research. Stable, supported builds of LabKey Server are freely available for download at <url>http://www.labkey.org</url>. Documentation and source code are available under the Apache License 2.0.</p
    • ā€¦
    corecore